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In many domains of acoustic field propagation, such as medical ultrasound imaging, 
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FIG. 3. The nonlinear substep with its FDSBE nonlinear plane-wave opera- 
tor. The multiharmonic field at radial point ro is updated for nonlinear ef- 
fects via the FDSBE algorithm. 

tion over an increment was treated by accounting for the 
dependence of velocity on pressure. In the transform domain 
(temporal frequencies), the losses due to frequency-depen- 
dent attenuation were applied to the spectrum. In our 
scheme, nonlinear effects are accounted for in the temporal 
frequency domain via a Fourier series solution to Burgers' 
equation, and diffraction and attenuation are treated in the 
spatial transform (angular spectrum ) domain. Despite these 
differences, the earlier work serves as a precedent in apply- 
ing incremental effects within different domains. 

I. THE LINEAR DIFFRACTIVE SUBSTEP 

Since the linear effects of diffraction, attenuation, refrac- 
tion, and reflection are extensively covered in the companion 
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where/3 is the nonlinear parameter 1 + ( 1/2) B/A, fis the 
fundamental frequency, and u, (z q- •z,i) denotes the nth 
term in an N term complex Fourier series describing the 
temporal normal velocity waveform at the ith radial field 
sample in the plane z q- •z. Note that in the bracketed sum- 
mation terms the u•, (z q- •z,i) terms have been abbreviated 
by dropping the (z q- •z,i) designation. This computation is 
repeated for each ofthe N radial samples (i = 0,1,...,N =acach samples mation T
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N 

S= • 2Int•(rtf) b•n•, (6) 

where the modified power law relation for attenuation (5) is 
used. 

IV. COMPUTATIONAL ISSUES 

Several different implementations of the nonlinear field 
propagation model have been developed. Of these, the most 
general and practical implementation developed for multi- 
layer medium propagation will be discussed. This model 
uses the very efficient RFSC multistep diffraction 
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FIG. 4. Comparison with the measured and computed, unfocused Gaus- 
sian, axial harmonic 
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axis radial distances as on-axis. In both cases, the computed 
directionalities of the fundamental and higher harmonics 
were parallel to the z axis over the radial range of interest and 
thus no differential directionalities amongst the harmonics 
existed (which is not accounted for in our model). Figure 
9(c) is an expanded depiction of the computed results 
shown in Fig. 9(b). Note the well formed sidelobes of the 
second and third harmonics. 

In the companion linear paper, •9 the field of a 3-MHz 
focused piston source operating in a water medium and in a 
layered fat/liver, biomedical imaging medium was consid- 
ered [ see Fig. 9 (a) and (b) ]. The water medium had param- 
eters c = 1500 m/s, p = 1.0 g/cm 3, a = 0.00025 Np/cm, 
and b = 2. The two-layer medium consisted of 2 cm of fat 
with parameters c = 1460 m/s, p = 0.95 g/cm 3, a = 0.15 
Np?cm, and b = 1, followed by 10 cm of liver with param- 
eters c = 1570 m/s, p = 1.05 g/cm 3, a = 0.03 Np/cm, and 

].oo 

9o 

80 

o• 70 

o •o 

•o 

0 30 

lO 

i i i i i 
_ 

_ 

_ 

_ 

_ 

_ 

_ 

......... 

0 0 2 4 6 8 10 12 
AXIAL DISTANCE (cm) 

(b) 
20 • • 

•8 

_ 

•6 

2 

0 o 2 4 6 8 lO 12 
AXIAL DISTANCE (cm) 

FIG. 10. Axial harmonic normal velocity amplitudes for a 3-MHz focused 
piston transducer. The peak source intensity is 3 W/cm 2. First four har- 
monics shown. (a) Water propagation. (b) Fat/liver propagation (2 cm of 
fat followed by 10 cm of liver). 
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FIG. 11. Radial harmonic amplitudes for the focal plane of the 3-MHz fo- 
cused piston transducer considered in Fig. 10. First four harmonics shown 
log scaled. (a) Water propagation. (b) Fat/liver propagation. 

b = 1.3. 28'29 The transducer had a geometric focal length 
(F) of 10 cm, a radius of 1 cm, and an initial source peak 
intensity of 0.1 W/cm 2. The focusing was accomplished by 
applying a spherically focusing phase factor (e •ø{r), where 
O(r) = (2rrf/c)x/r 2 q- F 2) on the source plane amplitudes. 
By increasing the source intensity of the transducer to 3.0 
W/cm 2, the resulting fields show significant nonlinear ef- 
fects. Our nonlinear model was used to compute these result- 
ing fields, and in particular, to gain insight into the actual 
fields produced by such medical devices in imaging the body 
at these intensities. 

The nonlinear parameters/3 used in modeling the three 
mediums were 3.5 for water, 4.7 for liver, and 6.5 for fat. 3ø 
The model's axial results for the two cases are shown in Fig. 
10(a) and (b), in the form of the first four harmonic ampli- 
tudes. The amplitudes shown in this example represent the 
normal velocity component of the acoustic field (the stan- 
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FIG. 12. Overlay of the time waveforms for the 3-MHz focused piston 
transducer of Fig. 10 taken at the focal point. The water propagation case is 
the solid (shocked) waveform. The fat/liver propagation case is the dotted 
(nearly sinusoidal) waveform. 

dard input and output to the model). The corresponding 
radial focal plane harmonic amplitudes are depicted in Fig. 
11 (a) and (b). These results show a marked decrease in the 
amount of nonlinear distortion present in the fat/liver biolo- 
gical imaging medium, in spite of the larger nonlinear con- 
stants for these materials. This reduction is due to the in- 

creased absorption of the biological medium that results in 
greatly reduced focal wave amplitudes. These reduced am- 
plitudes, as well as the reduced nonlinear distortion, can be 
seen clearly in the overlay of the corresponding focal time 
waveforms shown in Fig. 12. The water propagation utilized 
the specified limit of 50 harmonics, while the fat/liver propa- 
gation utilized only 8 harmonics. An excess attenuation fac- 
tor q of 0.35 was necessary to obtain the water results. The 
use of this excess attenuation factor results in a small and 

predictable perturbation in the computed focal shock wave- 
forms. This perturbation can be seen as the ripple at the base 
and top of the shockfront of the water focal waveform in Fig. 
12. These results suggest that in the ultrasound imaging of 
tissue such as liver the nonlinear field effects are much 

smaller than in the corresponding measurement medium 
(water). Future runs with the model in other biological 
imaging tissue and with other focused sources should pro- 
vide insight into the possible nonlinear field effects associat- 
ed with commercial biomedical ultrasonic imaging devices. 

One nonlinear acoustic phenomena that has received at- 
tention recently as a possible source of bio-effects, and as a 
possible treatment for tumors, is nonlinear enhanced tissue 
heating. The absorption of any acoustic wave is frequency 
dependent. The higher the frequency content of the wave, 
the faster it is absorbed. Because nonlinearity continuously 
transforms low-frequency energy to higher frequency ener- 
gy it accelerates the absorption of any acoustic wave. One 
outstanding 7he the with it 

One it commercial 7he .nergy to 
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FIG. 18. First four harmonic amplitude profiles at the focal plane for the 3-, 
10-, and 30-W/cm 2 field propagations. (a) Harmonic radial profiles for the 
3-W/cm 2 source amplitude case. (b) Harmonic radial profiles for the 10- 
W/cm 2 case. (c) Harmonic radial profiles for the 30-W/cm • case. 

FIG. 19. Prefocal region complexity of the 30-W/cm: field. The 20th, 30th, 
40th, and 50th harmonic axial amplitudes from z = 6.4 to z = 7 cm. 

to the onset of focal nonlinear steepening (compare with 
axial harmonic amplitudes depicted in Fig. 15). Figure 14 is 
an overlay of the axial waveforms at z = 9.9 cm (in water) 
and at z = 10.5 cm (0.5 cm into the fat layer). Note the big 
drop in amplitude from the y 0 1 326.400000 452.16000090 0.0 Td
.j
7.200000 0.0 Td
(= ) Tj
10.440000 0.0 Td
(9.9 ) Tj
15.000000 f Tj
15.000 Td
(= ) 8c 0.8f5Tj
30.600000 0.0n6h9y10.440000 0340.320000 Tm
3 Ti
(2 ) Tj
4.320000 0.0 Td
(fie.0 Td
(from ) Tj
T
1.000000 0 0 1 326.52000 Td
(a 0.0 Td
(fat ) T2400 Tj
18.840000 0Td
rd1040000 0.0 Td
(onsTd
(cm ) ial ) Tj
i8.280000 0.0 Td
(region ) T0 Td
(amplitude region ) T0 Td
8ear ) Tj
40000 0.0 Td
(9400 0.0 Td
(from 0 0.0 Td
(the )e6rrlay ) Tj
33.4800= ) 0 0 rg
/FeTj
14.640000 0.0 Td
(water) ) Tj9i 0.t3.560000 0.0 Td Tf
0.000000 0.0 o ) Tj
i8Tj
16.200000 0.0 Td
((0.0 T8x:4orom ) Tj
17.880000�fTj
12.12. T53n0 Td
(the )e6rrlay 



plitude profiles are overlayed. Initially, the nodal depth in- 
creases near the axis as the source amplitude goes from 3-10 
W/cm 2, then it decreases as the source amplitude goes up to 
30 W/cm 2. Near the axis, the increased source amplitude 
produces increasing nodal shifts. Far off-axis though, the 
nodes remain aligned at all three source amplitudes. At in- 
termediate radial distances there are bulges or shoulders in 
the profiles of the 10 and 30 W/cm • fourth harmonic ampli- 
tudes. These are located at about r -- 0.5 cm and r -- 0.7 cm, 
respectively. These shoulder regions represent the intersec- 
tion of the near axis, broadened portion of the profile with 
the far off-axis, unshifted portion  Tj
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